www.whkt.net > 对数等价无穷小替换公式

对数等价无穷小替换公式

当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

等价无穷小替换公式很多 常用的如下: 还有泰勒公式推导的一些如: x-arcsinx~(x^3)/6tanx-sinx~(x^3)/2e^x-1~xtanx-x~(x^3)/3 等等

在和式中不能使用等价无穷小代换. 整个和式xlne - x^2ln(1+1/x)是一个“∞-∞”的形式,所以不能单独计算任意一个极限.从整体上来看,xlne - x^2ln(1+1/x)=x^2*[1/x - ln(1+1/x)],是“∞*0”的结构,把x^2放到分母上的话,为“0/0”型,可用洛必达法则(这里把1/x换元再求导会简单许多,另外用泰勒公式也可计算)

=lim x(x^2+100-x^2)/[(x^2+100)^1/2 - x]=100 * lim x/[-x(1+100/x^2)^1/2 - x]=100 * lim 1/[-(1+100/x^2)^1/2 - 1]=100 * 1/[-(1+0)^1/2 - 1]=-100 * 1/2=-50

重要的等价无穷小替换 当x→0时,sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+bx)^a-1~abx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(也不是不能替换,但是有条件)

注意:x-arcsinx~负的(x^3)/6 ps:用泰勒公式或洛必达法则均可得证

等价无穷小:向左转|向右转(C为常数),就说b是a的n阶的无穷小,b和a^n是同阶无穷小.特殊地,C=1且n=1,即向左转|向右转,则称a和b是等价无穷小的关系,记作a~b.常用无穷小的等价代换当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)

等价无穷小常用公式:扩展资料 等价无穷小是无穷小的一种.在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的.等价无穷小也是同阶无穷小.从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式.等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易.求极限时,使用等价无穷小的条件 :1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以.参考资料搜狗百科-等价无穷小

趋向于0时:sinx,tanx,arcsinx,arctanx,ln(1+x),e^x-1.a^x-1~xlna (a>o,a不等于1) 1-cosx~(1/2)x^2 (1+ax)^b-1~abx [n次根号下(1+x)]-1~n分之x log以a为底的(1+x)的对数~x/lna (a>o,a不等于1)

sinx~xtanx~xarcsinx~xarctanx~xe^x-1~xln(1+x)~x(1+x)^α-1~αx1-cosx~x^2/2

网站地图

All rights reserved Powered by www.whkt.net

copyright ©right 2010-2021。
www.whkt.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com